BIOLOX®delta Quick Reference Guide
1. Maccauro G, Cittadini A, Magnani G, et al. In vivo characterization of Zirconia Toughened Alumina material: a comparative animal study. Int J Immunopathol Pharmacol. 2010;23(3):841846. doi:10.1177/039463201002300319.
2. Cunningham BW, Hallab NJ, Hu N, McAfee PC. Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model. J Neurosurg Spine. 2013;19(3):336-350. doi:10.3171/2013.5.SPINE13166.
3. Asif I M. Characterisation and Biological Impact of Wear Particles from Composite Ceramic Hip Replacements. [PhD thesis]. Leeds, UK: University of Leeds; 2018. etheses.whiterose.ac.uk/20563. Accessed March 6, 2020.
4. Savarino L, Baldini N, Ciapetti G, Pellacani A, Giunti A. Is wear debris responsible for failure in alumina-on-alumina implants? Acta Orthop. 2009;80(2):162-167. doi:10.3109/17453670902876730.
5. Maccauro G, Bianchino G, Sangiorgi S, et al. Development of a new zirconia-toughened alumina: promising mechanical properties and absence of in vitro carcinogenicity. Int J Immunopathol Pharmacol. 2009;22(3):773-779. doi:10.1177/039463200902200323.
6. Tsaousi A, Jones E, Case CP. The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res. 2010;697(1-2):1-9. doi:10.1016/j.mrgentox.2010.01.012.
7. Esposito C, Maclean F, Campbell P, Walter WL, Walter WK, Bonar SF. Periprosthetic tissues from third generation alumina-on-alumina total hip arthroplasties. J Arthroplasty. 2013;28(5):860-866. doi:10.1016/j.arth.2012.10.021.
8. Pitto RP, Sedel L. Periprosthetic joint infection in hip arthroplasty: is there an association between infection and bearing surface type? Clin Orthop Relat Res. 2016;474(10):2213–2218. doi:10.1007/s11999-016-4916-y.
9. Lenguerrand E, Whitehouse MR, Beswick AD, et al. Risk factors associated with revision for prosthetic joint infection after hip replacement: a prospective observational cohort study. Lancet Infect Dis. 2018;18(9):1004-1014. doi:10.1016/S1473-3099(18)30755-2.
10. Madanat R, Laaksonen I, Graves SE, Lorimer M, Muratoglu O, Malchau H. Ceramic bearings for total hip arthroplasty are associated with a reduced risk of revision for infection. Hip Int. 2018;28(3):222-226. doi:10.1177/1120700018776464.
11. Bordini B, Stea S, Castagnini F, Busanelli L, Giardina F, Toni A. The influence of bearing surfaces on periprosthetic hip infections: analysis of thirty nine thousand, two hundred and six cementless total hip arthroplasties. Int Orthop. 2019;43(1):103-109. doi:10.1007/s00264-018-4097-2.
12. Sorrentino R, Cochis A, Azzimonti B, et al. Reduced bacterial adhesion on ceramics used for arthroplasty applications. J Eur Ceram Soc. 2018;38(3):963-970. oi:10.1016/j.jeurceramsoc.2017.10.008.
13. Trampuz A, Maiolo EM, Winkler T, Perka C. Biofilm formation on ceramic, metal and polyethylene bearing components from hip joint replacement systems. Orthopaedic Proceedings. 2016;98-B(SUPP 10):80-80. doi:10.1302/1358-992X.98BSUPP_10.ISTA2015-080.
14. Beraudi A, Stea S, De Pasquale D, et al. Metal ion release: also a concern for ceramic-on-ceramic couplings? Hip Int. 2014;24(4):321-326. doi:10.5301/hipint.5000132.
15. Kretzer JP, Mueller U, Streit MR, et al. Ion release in ceramic bearings for total hip replacement: Results from an in vitro and an in vivo study. Int Orthop. 2018;42(1):65-70. doi:10.1007/s00264-017-3568-1.
16. Kocagoz SB, Underwood RJ, MacDonald DW, Gilbert JL, Kurtz SM. Ceramic heads decrease metal release caused by head-taper fretting and corrosion. Clin Orthop Relat Res. 2016;474(4):985-994. doi:10.1007/s11999-015-4683-1.
17. Thomas P, Stea S. Metal Implant Allergy and Immuno-Allergological Compatibility Aspects of Ceramic Materials. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg; 2015.
18. Bergschmidt P, Bader R, Ganzer D, et al. Ceramic femoral components in total knee arthroplasty - two year follow-up results of an international prospective multi-centre study. Open Orthop J. 2012;6:172-178. doi:10.2174/1874325001206010172.
19. Sharplin P, Wyatt MC, Rothwell A, Frampton C, Hooper G. Which is the best bearing surface for primary total hip replacement? A New Zealand Joint Registry study. Hip Int. 2017;28(4):352-362. doi:10.5301/hipint.5000585.
20. Peters RM, Van Steenbergen LN, Stevens M, Rijk PC, Bulstra SK, Zijlstra WP. The effect of bearing type on the outcome of total hip arthroplasty. Acta Orthop. 2018;89(2):163-169. doi:10.1080/17453674.2017.1405669.
21. Higuchi Y, Seki T, Hasegawa Y, Takegami Y, Morita D, Ishiguro N. 32-mm ceramic-on-ceramic total hip arthroplasty versus 28-mm ceramic bearings: 5- to 15-year follow-up study. Hip Int. 2019;29(1):65-71. doi:10.1177/1120700018760971.
22. Toni A, Giardina F, Guerra G, et al. 3rd generation alumina-on-alumina in modular hip prosthesis: 13 to 18 years follow-up results. Hip Int. 2017;27(1):8-13. doi:10.5301/hipint.5000429.
23. Kim YH, Park JW, Kulkarni SS, Kim YH. A randomised prospective evaluation of ceramic-on-ceramic and ceramic-on-highly cross-linked polyethylene bearings in the same patients with primary cementless total hip arthroplasty. Int Orthop. 2013;37(11):2131-2137. doi:10.1007/s00264-013-2036-9.
24. Piconi C, Porporati AA, Streicher RM. Ceramics in THR bearings: behavior under off-normal Conditions. Key Eng Mat. 2014;631:3-7. doi:10.4028/www.scientific.net/kem.631.3.
25. Lee R, Essner A, Wang A, Jaffe WL. Scratch and wear performance of prosthetic femoral head components against crosslinked UHMWPE sockets. Wear. 2009;267(11):1915-1921. doi:10.1016/- j.wear.2009.03.034
26. De Fine M, Terrando S, Hintner M, Porporati AA, Pignatti G. Pushing Ceramic-on-Ceramic in the most extreme wear conditions: A hip simulator study. Orthop Traumatol Surg Res. 2020:S1877-0568(20)30184-5. doi:10.1016/j.otsr.2020.05.003.
27. Caravaca C, Porporati AA, Streicher R. Wettability of bearing couples: how to prepare the surfaces. Orthopaedic Proceedings. 2016;98-B(SUPP 7):67.
28. Panagiotidou A, Meswania J, Osman K, et al. The effect of frictional torque and bending moment on corrosion at the taper interface: an in vitro study. Bone Joint J. 2015;97-B(4):463-472. doi:10.1302/0301-620X.97B4.34800.
29. Kurtz SM, Kocagöz SB, Hanzlik JA, et al. Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin Orthop Relat Res. 2013;471(10):3270-3282. doi:10.1007/s11999-013-3096-2.
30. Kurtz SM, Kocagöz S, Arnholt C, Huet R, Ueno M, Walter WL. Advances in zirconia toughened alumina biomaterials for total joint replacement. J Mech Behav Biomed Mater. 2014;31:107-116. doi:10.1016/j.jmbbm.2013.03.022.
31. Vrbka M, Nečas D, Bartošík J. Determination of a friction coefficient for THA bearing couples. Acta Chir Orthop Traumatol Cech. 2015;82(5):341-347.
32. Brockett C, Williams S, Jin Z, Isaac G, Fisher J. Friction of total hip replacements with different bearings and loading condition. J Biomed Mater Res B Appl Biomater. 2007;81(2):508-515. doi:10.1002/-jbm.b.30691.
33. Grupp TM, Holderied M, Mulliez MA, et al. Biotribology of a vitamin E-stabilized polyethylene for hip arthroplasty – Influence of artificial ageing and third-body particles on wear. Acta Biomater. 2014;10(7):3068–3078. doi:10.1016/j.actbio.2014.02.052.
34. Nikolaou VS, Edwards MR, Bogoch E, Schemitsch EH, Waddell JP. A prospective randomized controlled trial comparing three alternative bearing surfaces in primary total hip replacement. J Bone Joint Surg Br. 2012;94-B(4):459-465. doi:10.1302/0301-620X.94B4.27735.
35. Higuchi Y, Hasegawa Y, Seki T, Komatsu D, Ishiguro N. Significantly Lower Wear of Ceramic-on-Ceramic Bearings Than Metal-on-Highly Cross-Linked Polyethylene Bearings: A 10- to 14-Year Follow-Up Study. J Arthroplasty. 2016;31(6):1246-1250. doi:10.1016/j.arth.2015.12.014.
36. Higuchi Y, Seki T, Morita D, Komatsu D, Takegami Y, Ishiguro N. Comparison of wear rate between ceramic-on-ceramic, metal on highly cross-linked polyethylene, and metal-on-metal bearings. Rev Bras Ortop (Sao Paulo). 2019;54(3):295-302. doi:10.1055/s-0039-1691762.
37. Zietz C, Bergschmidt P, Lange R, Mittelmeier W, Bader R. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. Int J Artif Organs. 2013;36(1):47-55. doi:10.5301/ijao.5000189.
38. Wyles CC, McArthur BA, Wagner ER, Houdek MT, Jimenez-Almonte JH, Trousdale RT. Ceramic femoral heads for all patients? An argument for cost containment in hip surgery. Am J Orthop (Belle Mead NJ). 2016;45(6):E362-E366.
39. Carnes KJ, Odum SM, Troyer JL, Fehring TK. Cost analysis of ceramic heads in primary total hip arthroplasty. J Bone Joint Surg Am. 2016;98(21):1794-1800. doi:10.2106/JBJS.15.00831.
40. Kurtz SM, Lau E, Baykal D, Odum S, Springer BD, Fehring TK. Are ceramic bearings becoming cost-effective for all patients? J Arthroplasty. 2018;33(5):1352-1258. doi:10.1016/j.arth.2017.12.011.
41. Kurtz SM, Lau E, Baykal D, Odum SM, Springer BD, Fehring TK. Are ceramic bearings becoming cost-effective for all patients within a 90-day bundled payment period? J Arthroplasty. 2019;34(6):1082-1088. doi:10.1016/j.arth.2019.01.074.
42. Plummer DR, Berger RA, Paprosky WG, et al. Diagnosis and management of adverse local tissue reactions secondary to corrosion at the head-neck junction in patients with metal on polyethylene Bearings. J Arthroplasty. 2016;31(1):264268. doi:10.1016/j.arth.2015.07.039.